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The number of strata in propensity score stratification 
for a binary outcome
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A b s t r a c t

Introduction: Non-interventional and other observational studies have be-
come important in medical research. In such observational, non-randomized 
studies, groups usually differ in some baseline covariates. Propensity scores 
are increasingly being used in the statistical analysis of these studies. Strat-
ification, also called subclassification, based on propensity scores is one of 
the possible methods. There is the quasi-standard of using five strata. In 
this paper we focus on a binary outcome and evaluate the above-mentioned 
standard of using five strata.
Material and methods: Bias and power for different numbers of strata are 
investigated with a simulation study. The methods are illustrated using data 
from a study where patients with diabetes mellitus and triple vessel disease 
undergoing coronary artery bypass surgery with and without previous per-
cutaneous coronary intervention were compared.
Results: We show that more than five strata can be more powerful and give 
less biased results. However, using more than ten strata hardly gives any 
further benefit. 
Conclusions: When applying a  stratification, more than five strata may be 
preferable, especially because of increased power. Our simulation study does 
not show a clear winner; hence a useful strategy could be to work with five 
as well as with ten strata.

Key words: logistic regression, propensity score, stratification.

Introduction

Non-interventional studies have become important for the continuous 
benefit-risk assessment of medicines [1]. In non-interventional studies and 
other observational studies, treatments are not randomly assigned, and, 
as a consequence, any difference in outcome variables between treatment 
groups could be caused by differences between groups that existed prior to 
treatment. In such observational, non-randomized studies, groups usually 
differ in some baseline covariates. Often, randomized studies are not pos-
sible for ethical or practical reasons and the question arises how to reliably 
analyze a non-randomized trial. Methods based on the propensity score to 
adjust for between-group differences in observational studies have become 
increasingly popular in different areas, including cardiovascular research; 
see for instance a study about abdominal aortic aneurysm repair [2]. 
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The propensity score is defined as the condi-
tional probability of receiving the treatment given 
the observed baseline covariates. It can be esti-
mated using logistic regression and then be used 
to balance the covariates within the two groups in 
order to reduce the bias in estimating the treat-
ment effect. Common techniques using the pro-
pensity score are matching, stratification, regres-
sion adjustment and inverse probability weighting 
[3–6]. Guo and Fraser [5] demonstrated that the 
bias can be substantial if key covariates are not 
controlled in the analysis of data from observa-
tional studies.

In this paper we focus on stratification based 
on the propensity scores and consider a  binary 
outcome variable. When applying stratification, 
also called subclassification, it is assumed that 
the different groups have a similar distribution of 
baseline covariates within each stratum. Usually 
five strata are created [7, 8], even for substantial 
sample sizes [9]. Rosenbaum and Rubin [3] re-
ferred to Cochran [10], who showed that five strata 
can remove 90% of the bias due to the stratifying 
variable. However, Cochran’s results are based on 
a linear regression. Hence, the results do not nec-
essarily also hold for a  logistic regression, which 
is carried out when a binary outcome is analyzed. 
In combination with a stratification, a condition-
al logistic regression is appropriate for a  binary 
outcome. However, the stratification variable, i.e. 
the propensity score, is continuous. When catego-
rizing such a continuous confounder, its effect is 
only partly controlled. Neuhäuser and Becher [11] 
investigated the residual confounding and found 
that the more strata are formed, the better the 
effect is controlled. It should be noted that distinct 
reductions of residual confounding were observed 
when using more than five strata [11]. 

Lunceford and Davidian [9], who investigated 
a  normally distributed outcome, noted that the 
bias due to residual confounding becomes more 
serious with increasing sample size for a  fixed 
number of strata. They showed that the bias can 
be reduced when doubling the strata from 5 to 
10, and concluded that establishing guidelines 
for choosing the number of strata is an interest-
ing topic for future research [9]. However, Lunc-
eford and Davidian [9] did not consider a binary 
outcome. In this note we show that increasing the 
number of strata can reduce bias for a binary out-
come, and we show that increasing the number of 
strata can also raise the power.

Material and methods

In a simulation study performed with SAS (ver-
sion 9.3, SAS Institute Inc., Cary, NC), we simulat-
ed propensity scores using different beta distri-
butions. The binary outcome was simulated with 

Bernoulli distributions with varying dependence 
on group and on the propensity score. A stratifi-
cation was performed based on the propensity 
scores. Different numbers of strata were used. 
The values of the propensity score for both groups 
combined were used to define strata boundaries 
in order to obtain approximately equally sized stra-
ta. A conditional logistic regression was applied to 
compare the two groups with respect to the bi-
nary outcome. In this model the group was used 
as a class variable and the categorized propensity 
score as a stratification variable. For each config-
uration, 10 000 simulation runs were performed. 
The investigated total sample sizes were 2000 
(balanced with 1000 per group, and unbalanced 
with n

1 = 500 and n2 = 1500) and 1000 (balanced 
with 500 per group). The power was estimated as 
the proportion of simulated data sets with a p-val-
ue not larger than 0.05 for the null hypothesis that 
the regression coefficient for a difference between 
groups is zero. 

Instead of simulating propensity scores directly, 
as in this study, one can simulate covariates and 
compute the values of the propensity scores in 
a following step (see e.g. [12]). However, the aim 
of this study was to investigate whether a larger 
number of strata than five may be preferable. This 
question can be approached with a direct simula-
tion of propensity scores.

In addition to the simulation study we con-
sider a study presented by Thielmann et al. [13]. 
In this study patients with diabetes mellitus and 
triple-vessel disease undergoing coronary artery 
bypass surgery were investigated. In group 1  
(n

1 = 621) the bypass grafting was the primary 
revascularization procedure whereas patients in 
group 2 (n

2 = 128) were treated with a previous 
percutaneous coronary intervention (PCI) before 
the bypass surgery. The aim therefore was to 
determine whether previous PCI has a  prognos-
tic impact on the surgical outcome when finally 
referred to coronary artery bypass grafting. Two 
binary outcome variables were analyzed: in-hos-
pital mortality and major adverse cardiac events 
(MACE), both determined in hospital during the 
index hospitalization. The hospital stay ranged 
from 7 to 13 days [13]. Regarding both death 
and MACE, it was found that prior PCI adversely 
affects the outcome of the subsequent bypass 
surgery. This link between previous PCI and coro-
nary artery bypass graft risk was later confirmed 
in a  large multi-center study with approximately 
30 000 patients [14].

Results

Figure 1 presents the decrease in bias when 
increasing the number of the strata, consistent 
with published results for a normally distributed 
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response [9]. Our results in Figure 1 indicate that 
the choice of five strata is not always ideal. The 
bias is smaller for a larger number of strata such 
as 10; between 10 and more strata there is hardly 
any difference in bias. However, the focus of this 
note is on power.

In Figure 2 we show that the power can be dis-
tinctly larger when using more than five strata, but 
again using more than 10 strata only gives a very 
small gain. However, there are also scenarios 
where five strata give more power, as scenarios 4, 
5, and 8 in Table I exemplarily demonstrate. When 
there is no need for a  propensity score adjust-
ment, as in scenarios 9 and 10 in Table I, a smaller 
number of strata gives slightly greater power, al-
though the difference in power is marginal. This 
is consistent with results presented by Neuhäuser 
and Becher [11] showing that an unnecessarily re-
fined stratification is disadvantageous.

When there is no difference at all in the prob-
ability of success between the groups, the actual 
type I error rate is close to α = 0.05 (see scenar-
io 1 in Table I). However, when the difference is 
caused solely by the difference in the distribution 
of the propensity score, five strata might be insuf-
ficient to control for this, as scenario 2 with more 
than 20% significances in the case of five strata 
indicates; for 10 or more strata the proportions of 
significances are close to 5%.

Table II demonstrates that similar results can 
be obtained for smaller sample sizes or unbal-
anced groups.

Thielmann et al. [13] computed the propensity 
score using a logistic regression based on 12 covari-
ates including major preoperative risk factors such 
as presence of obesity (defined as body mass index 
(BMI) > 30 kg/m2) and renal disease (serum creati-
nine > 2.0 mg/dl). As shown in Table I of Thielmann  
et al. [13], at the 5% level three of the 12 covari-
ates (presence of a renal disease, a previous myo-
cardial infarction, and antiplatelet therapy) were 
significantly different between the groups. In ad-
dition, presence of hypertension was borderline 
significant with p = 0.07. All these differences dis-
appear when testing in a stratified analysis with 
five strata based on the propensity score.

However, five strata are not enough for another 
reason: there seems to be heterogeneity between 
the stratum-specific odds ratios. The Breslow-Day 
test for homogeneity of odds ratios gives p = 0.061 
for in-hospital death when using five strata. Zel-
en’s exact test for equal odds ratios, an exact coun-
terpart to the Breslow-Day asymptotic test, gives  
p = 0.077. Eleven strata are necessary in order to 
obtain a p-value of the homogeneity tests larger 
than 0.2. Regarding MACE, the other outcome vari-
able, there is no indication of heterogeneity. Note 
that there are significant differences between the 

groups regarding both outcome variables irrespec-
tive of whether one uses five or eleven strata, or 
twenty strata as in the original analysis [13]. The 
p-values displayed in Table III indicate that using 
more than five strata can be more powerful.

One might argue that only pretreatment co-
variates that show a  between-group difference 
should be included in the logistic regression mod-
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Figure 1. Mean of the estimated odds ratios (sim-
ulated using conditional logistic regression with 
stratification based on propensity scores, sample 
size per group = 1000, distributions of the propen-
sity score (PS): beta(4,2) in group 1 and beta(7,1) in 
group 2, binomial proportions for success: 0.18 + 
PS/2 in group 1 and 0.1+PS/2 in group 2); the true 
odds ratio is 1.4 (indicated with the horizontal line)
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Figure 2. Simulated power for detecting a  be-
tween-group difference using conditional logistic 
regression with stratification based on propensity 
scores (sample size per group = 1000, significance 
level: 0.05, distributions of the propensity score 
(PS): beta(4,2) in group 1 and beta(7,1) in group 2, 
binomial proportions for success: 0.1 + shift + PS/2 
in group 1 and 0.1 + PS/2 in group 2)
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el for calculating the propensity score. In this ex-
ample, one would therefore consider presence of 
a renal disease, a previous myocardial infarction, 
antiplatelet therapy and hypertension. With these 
four dichotomous variables, only 24 = 16 different 
combinations of covariate values are possible. Ac-
tually 15 out of the 16 possible combinations oc-
cur. Thus, there are only 15 different values for the 
propensity score, five of which occur in less than 

10 patients only. Therefore, more than 10 strata 
are not appropriate in this case. 

Again there are significant differences regard-
ing both outcomes: for death the p-values are 
0.015 (5 strata) and 0.016 (10 strata); for MACE 
the p-values are 0.023 (5 strata) and 0.024  
(10 strata). The related homogeneity tests are not 
significant. In summary, the significant differences 
between the two groups reported by Thielmann  

Table I. Simulated power for detecting a  between-group difference using conditional logistic regression with  
stratification based on propensity scores (sample size per group = 1000, significance level: 0.05)

Variable Number  
of strata

Group 1 Group 2 Number  
of strata

Group 1 Group 2

Scenario 1 Scenario 2

Distribution of PS Beta(2,4) Beta(7,1) Beta(2,4) Beta(7,1)

Binomial propor tion for success 0.1 0.1 0.1 + PS/2 0.1 + PS/2

 5
10
15
20
30

0.05
0.05
0.05
0.05
0.05

5
10
15
20
30

0.21
0.06
0.05
0.05
0.05

Scenario 3 Scenario 4

Distribution of PS Beta(4,2) Beta(2,4) Beta(4,2) Beta(2,4)

Binomial proportion for success 0.1 + PS/2 0.19 + PS/2 0.19 + PS/2 0.1 + PS/2

5
10
15
20
30

0.76
0.83
0.84
0.84
0.84

5
10
15
20
30

0.93
0.88
0.87
0.86
0.86

Scenario 5 Scenario 6

Distribution of PS Beta(4,2) Beta(2,4) Beta(4,2) Beta(2,4)

Binomial proportion for success 0.1 + PS/8 0.1 0.1 0.1 + PS/8

5
10
15
20
30

0.87
0.85
0.85
0.84
0.84

5
10
15
20
30

0.86
0.86
0.86
0.86
0.85

Scenario 7 Scenario 8

Distribution of PS Beta(2,4) Beta(7,1) Beta(4,2) Beta(7,1)

Binomial proportion for success 0.3 + PS/2 0.1 + PS/2 0.1 + PS/2 0.18 + PS/2

5
10
15
20
30

0.88
0.92
0.93
0.94
0.94

5
10
15
20
30

0.89
0.84
0.83
0.82
0.82

Scenario 9 Scenario 10

Distribution of PS Beta(4,2) Beta(7,1) Beta(4,2) Beta(2,4)

Binomial proportion for success 0.1 0.15 0.1 0.15

5
10
15
20
30

0.78
0.77
0.77
0.77
0.76

5
10
15
20
30

0.70
0.69
0.68
0.68
0.68

PS – propensity score, Beta(α,β): beta distribution with parameters α and β.
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et al. [13] can be confirmed using different analy-
ses based on propensity score stratification.

Discussion

Propensity scores are commonly applied using 
matching, stratification, or regression adjustment. 
Austin [7] also investigated inverse probability of 
treatment weighting using the propensity score. 
He compared these four methods and found that 
matching and weighting with the inverse probabil-
ity can be slightly better than the other two pro-
pensity score methods. However, Austin [7] inves-
tigated a stratification with five strata only, which 
might be a limitation of his work. Because it can be 
an improvement to create a larger number of stra-
ta, the stratification might be more competitive. In 

addition, stratification has another advantage: the 
propensity scores can only be estimated; therefore 
a stratification might be preferable because then 
small variations in the estimated values of the pro-
pensity score hardly have any influence [15]. 

Table II. Simulated power for detecting a  between-group difference using conditional logistic regression with  
stratification based on propensity scores (sample size per group = 500 for scenarios 1–6, and 500 in group 1 and 
1500 in group 2 for scenarios 7–8, significance level: 0.05)

Variable Number  
of strata

Group 1 Group 2 Number  
of strata

Group 1 Group 2

Scenario 1 Scenario 2

Distribution of PS Beta(2,4) Beta(7,1) Beta(2,4) Beta(7,1)

Binomial propor tion for success 0.1 0.1 0.1 + PS/2 0.1 + PS/2

 5
10
15
20
30

0.05
0.05
0.05
0.05
0.05

5
10
15
20
30

0.13
0.05
0.05
0.05
0.05

Scenario 3 Scenario 4

Distribution of PS Beta(4,2) Beta (2,4) Beta (4,2) Beta(2,4)

Binomial proportion for success 0.1 + PS/2 0.3 + PS/2 0.3 + PS/2 0.1 + PS/2

5
10
15
20
30

0.88
0.90
0.90
0.90
0.89

5
10
15
20
30

0.94
0.92
0.91
0.90
0.89

Scenario 5 Scenario 6

Distribution of PS Beta(4,2) Beta(7,1) Beta(4,2) Beta(7,1)

Binomial proportion for success 0.25 + PS/2 0.1 + PS/2 0.1 + PS/2 0.2 + PS/2

5
10
15
20
30

0.74
0.76
0.76
0.76
0.75

5
10
15
20
30

0.79
0.74
0.73
0.72
0.72

Scenario 7 Scenario 8

Distribution of PS Beta(4,2) Beta(2,4) Beta(4,2) Beta(2,4)

Binomial proportion for success 0.1 + PS/2 0.2 + PS/2 0.2 + PS/2 0.1 + PS/2

5
10
15
20
30

0.70
0.80
0.82
0.83
0.83

5
10
15
20
30

0.95
0.88
0.86
0.85
0.84

PS – propensity score, Beta(α,β) – beta distribution with parameters α and β.

Table III. Results of the conditional logistic regres-
sion with stratification based on propensity scores 
applied to the data of Thielmann et al. [13]

Number of 
strata

P-values for a between-group difference

In-hospital death MACE

5 0.033 0.035

11 0.023 0.032

20 0.028 0.016
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When applying a stratification, using five stra-
ta, i.e. quintiles, has become a  widely used ap-
proach. In this paper, we demonstrate that a larg-
er number of strata may be preferable, especially 
because of increased power. The simulation study 
does not show a clear winner; hence we cannot 
present a  clear strategy for how to choose the 
number of strata in general. Nevertheless, choos-
ing five strata, just because this approach is com-
mon, seems to be not an optimal approach. Heinze 
and Jüni [16] suggested more than five strata for 
large data sets, without giving any clear advice. 
We can reconfirm the statement that establishing 
guidelines for choosing the number of strata is an 
interesting avenue for future research [9]. 

In principle, one could increase the number of 
strata up to a 1 : 1, or 1 : R, matching. However, 
already in 1986 it was shown that it is preferable 
“to pool comparable matched pairs into strata and 
perform a stratified rather than a paired analysis” 
[17]. This conclusion to combine patients with 
similar attributes into one stratum before per-
forming a conditional logistic regression also ap-
plies to more general designs [11, 17]. Moreover, 
one should avoid a stratification which is too fine 
for a further reason: this increases the probability 
of there being patients of one group only within 
a  stratum; such a  stratum would have no influ-
ence in the stratified analysis [11].

Pending further research, a  useful strategy 
could be to work with five as well as with ten stra-
ta, especially when a statistical analysis based on 
the propensity score is carried out as an additional 
analysis to confirm (or not confirm) the findings 
of alternative analyses. If the estimates based on 
five and 10 strata deviate, especially when this 
causes a different conclusion, the estimates based 
on ten strata might be preferable, because the 
bias usually decreases with the number of stra-
ta. The bias can be caused by the heterogeneity 
of patients within strata. For very small studies it 
might be inappropriate to use more than 5 strata. 
Furthermore, when there is only a limited number 
of different combinations of discrete covariate 
values, a large number of strata is not appropriate, 
as illustrated using the example data set.

One might argue that the numbers 5 and 10 are  
arbitrary. However, five strata is the quasi- 
standard, while using more than ten strata gives 
no benefit according to our simulation study. Re-
garding our example data, the estimates based on 
different numbers of strata are similar: the esti-
mated odds ratios for in-hospital death are 2.85  
(5 strata), 3.09 (10 strata), 3.07 (11 strata), and 2.97  
(20 strata).
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